top of page

Publications

Investigating the role of lipid genes in liver disease using fatty liver models of alcohol and high fat in zebrafish (Danio rerio)

Fathima Shihana, Pradeep Manuneedhi Cholan, Stuart Fraser, Stefan H Oehlers, Devanshi Seth

Background: Accumulation of lipid in the liver is the first hallmark of both alcohol-related liver disease (ALD) and non-alcohol-related fatty liver disease (NAFLD). Recent studies indicate that specific mutations in lipid genes confer risk and might influence disease progression to irreversible liver cirrhosis. This study aimed to understand the function/s of lipid risk genes driving disease development in zebrafish genetic models of alcohol-related and non-alcohol-related fatty liver.


Methods: We used zebrafish larvae to investigate the effect of alcohol and high fat to model fatty liver and tested the utility of this model to study lipid risk gene functions. CRISPR/Cas9 gene editing was used to create knockdowns in 5 days post-fertilisation zebrafish larvae for the available orthologs of human cirrhosis risk genes (pnpla3, faf2, tm6sf2). To establish fatty liver models, larvae were exposed to ethanol and a high-fat diet (HFD) consisting of chicken egg yolk. Changes in morphology (imaging), survival, liver injury (biochemical tests, histopathology), gene expression (qPCR) and lipid accumulation (dye-specific live imaging) were analysed across treatment groups to test the functions of these genes.


Results: Exposure of 5-day post-fertilisation (dpf) WT larvae to 2% ethanol or HFD for 48 h developed measurable hepatic steatosis. CRISPR-Cas9 genome editing depleted pnpla3, faf2 and tm6sf2 gene expression in these CRISPR knockdown larvae (crispants). Depletion significantly increased the effects of ethanol and HFD toxicity by increasing hepatic steatosis and hepatic neutrophil recruitment ≥2-fold in all three crispants. Furthermore, ethanol or HFD exposure significantly altered the expression of genes associated with ethanol metabolism (cyp2y3) and lipid metabolism-related gene expression, including atgl (triglyceride hydrolysis), axox1, echs1 (fatty acid β-oxidation), fabp10a (transport), hmgcra (metabolism), notch1 (signalling) and srebp1 (lipid synthesis), in all three pnpla3, faf2 and tm6sf2 crispants. Nile Red staining in all three crispants revealed significantly increased lipid droplet size and triglyceride accumulation in the livers following exposure to ethanol or HFD.


Conclusions: We identified roles for pnpla3, faf2 and tm6sf2 genes in triglyceride accumulation and fatty acid oxidation pathways in a zebrafish larvae model of fatty liver.

Liver International

2023

MicroRNAs Signature Panel Identifies Heavy Drinkers with Alcohol-Associated Cirrhosis from Heavy Drinkers without Liver Injury

Fathima Shihana, Mugdha V Joglekar, Tae-Hwi Schwantes-An, Anandwardhan A Hardikar, Devanshi Seth 

Background: Alcohol-associated liver disease (ALD) is the most common disorder of prolonged drinking. Mechanisms underlying cirrhosis in such patients remain unclear. MicroRNAs play regulatory role in several diseases, are affected by alcohol and may be important players in alcohol use disorders, such as cirrhosis. Methods: We investigated serum samples from heavy chronic alcohol users (80 g/day (male) and 50 g/day (female) for ≥10 years) that were available from our previously reported GenomALC study. A subset of GenomALC drinkers with liver cirrhosis (cases, n = 24) and those without significant liver disease (drinking controls, n = 23) were included. Global microRNA profiling was performed using high-throughput real-time quantitative PCR to identify the microRNA signatures associated with cirrhosis. Ingenuity Pathway Analysis (IPA) software was utilized to identify target mRNAs of significantly altered microRNAs, and molecular pathways were analysed. Identified microRNAs were analysed for correlation with traditional liver disease biomarkers and risk gene variants previously reported from GenomALC genome-wide association study. Results: The expression of 21 microRNAs was significantly downregulated in cases compared to drinking controls (p < 0.05, ∆∆Ct > 1.5-fold). Seven microRNAs (miR-16, miR-19a, miR-27a, miR-29b, miR-101, miR-130a, and miR-191) had a highly significant correlation (p < 0.001) with INR, bilirubin and MELD score. Three microRNAs (miR-27a, miR-130a and miR-191) significantly predicted cases with AUC-ROC 0.8, 0.78 and 0.85, respectively (p < 0.020); however, INR performed best (0.97, p < 0.001). A different set of six microRNAs (miR-19a, miR-26a, miR-101, miR-151-3p, miR-221, and miR-301) showed positive correlation (ranging from 0.32 to 0.51, p < 0.05) with rs10433937:HSD17B13 gene variant, associated with the risk of cirrhosis. IPA analysis revealed mRNA targets of the significantly altered microRNAs associated with cell death/necrosis, fibrosis and increased steatosis, particularly triglyceride metabolism. Conclusions: MicroRNA signatures in drinkers distinguished those with liver cirrhosis from drinkers without liver disease. We identified mRNA targets in liver functions that were enriched for disease pathogenesis pathways.

Biology (Basel)

2023

CD38 mediates nicotinamide mononucleotide base exchange to yield nicotinic acid mononucleotide

Romanthi Madawala, Jasmine L Banks, Sarah E Hancock, Lake-Ee Quek, Nigel Turner, Lindsay E Wu

Journal of Biological Chemistry

2025

ImAge quantitates aging and rejuvenation.

or efficient, cost-effective and personalized healthcare, biomarkers that capture aspects of functional, biological aging, thus predicting disease risk and lifespan more accurately and reliably than chronological age, are essential. We developed an imaging-based chromatin and epigenetic age (ImAge) that captures intrinsic age-related trajectories of the spatial organization of chromatin and epigenetic marks in single nuclei, in mice. We show that such trajectories readily emerge as principal changes in each individual dataset without regression on chronological age, and that ImAge can be computed using several epigenetic marks and DNA labeling. We find that interventions known to affect biological aging induce corresponding effects on ImAge, including increased ImAge upon chemotherapy treatment and decreased ImAge upon caloric restriction and partial reprogramming by transient OSKM expression in liver and skeletal muscle. Further, ImAge readouts from chronologically identical mice inversely correlated with their locomotor activity, suggesting that ImAge may capture elements of biological and functional age. In sum, we developed ImAge, an imaging-based biomarker of aging with single-cell resolution rooted in the analysis of spatial organization of epigenetic marks.

Nature Aging

2024

Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells

Xuan Sun, Benjamin Cao, Marina Naval-Sanchez, Tony Pham, Yu Bo Yang Sun, Brenda Williams, Shen Y. Heazlewood, ... Christian M. Nefzger & Susan K. Nilsson

With age, hematopoietic stem cells (HSC) undergo changes in function, including reduced regenerative potential and loss of quiescence, which is accompanied by a significant expansion of the stem cell pool that can lead to haematological disorders. Elevated metabolic activity has been implicated in driving the HSC ageing phenotype. Here we show that nicotinamide riboside (NR), a form of vitamin B3, restores youthful metabolic capacity by modifying mitochondrial function in multiple ways including reduced expression of nuclear encoded metabolic pathway genes, damping of mitochondrial stress and a decrease in mitochondrial mass and network-size. Metabolic restoration is dependent on continuous NR supplementation and accompanied by a shift of the aged transcriptome towards the young HSC state, more youthful bone marrow cellular composition and an improved regenerative capacity in a transplant setting. Consequently, NR administration could support healthy ageing by re-establishing a more youthful hematopoietic system.

Nature Communications

2021

bottom of page